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Abstract

This paper describes an approach to the detection of stress
in spoken New Zealand English. After identifying the
vowel segments of the speech signal, the approach ex-
tracts two different sets of features — prosodic features
and vowel quality features — from the vowel segments.
These features are then normalised and scaled to obtain
speaker independent feature values that can be used to
classify each vowel segment as stressed or unstressed. We
used Decision Trees (C4.5) and Support Vector Machines
(LIBSVM) to learn stress-detecting classifiers with vari-
ous combinations of the features. The approach was eval-
uated on 60 adult female utterances with 703 vowels and
a maximum accuracy of 84.72% was achieved. The re-
sults showed that a combination of features derived from
duration and amplitude achieved the best performance but
the vowel quality features also achieved quite reasonable
results.

Keywords: Machine learning, feature extraction, speech
recognition, stress detection, decision tree, support vector
machine.

1 Introduction

As English becomes more and more important as a com-
munication tool for people from all countries, there is an
ever increasing demand for good quality teaching of En-
glish as a Second Language (ESL). New Zealand is one of
the destinations for foreign students wanting to learn En-
glish from English speaking teachers, and for political rea-
sons is often perceived as a desirable destination. Learn-
ing English well requires lots of practice and a great deal
of individualised feedback to identify and correct errors.
Providing this individualised feedback from ESL teachers
is very expensive, and the shortage of ESL teachers means
that there is increasing demand for computer software that
can provide useful individualised feedback to students on
all aspects of their English.

The ESL Software Tools research group at Victoria
University of Wellington is developing a software sys-
tem to provide individualised feedback to ESL students
on prosodic aspects of their speech production, focusing
particularly on the stress and rhythm of the speech. The
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overall design of the system involves a pedagogic com-
ponent that engages in simple dialogues with the student,
and a speech analyser that analyses the student’s speech,
identifying the stress pattern in the speech and comparing
it with a target pattern in order to provide useful feedback
on stress and rhythm errors.

The first stage of the speech analyser performs
phoneme level speech recognition on the student’s speech
to identify the start and end times of all the phonetic ele-
ments of the speech. The second stage analyses the vowel
elements of the speech to identify which elements would
be perceived as stressed. The final stage matches the pat-
tern of stresses to the target pattern to identify any stress
or rhythm errors in the student’s speech.

The first stage of the speech analyser was described in
(Xie, Andreae, Zhang & Warren 2004). The current paper
focuses on the second stage, which involves first selecting,
extracting and normalising a set of features of each vowel
segment identified in the first stage, and then using these
features to classify the vowels as stressed or unstressed.
We use machine learning methods, namely decision trees
and support vector machines, to construct the classifier. It
is not clear from the literature exactly which features are
most effective for the automatic determination of stress;
an important goal of our research is therefore to identify
which features are most helpful in detecting stress in com-
plete sentences. One of the features that we investigate is
vowel quality. Measuring vowel quality is not as straight-
forward as the other features we investigate, and the paper
describes a novel method for extracting vowel quality fea-
tures.

The remainder of the paper is organised as follows:
section 2 presents some essential background; section 3
describes feature extraction and normalisation; section 4
describes our experimental design and methods, and sec-
tion 5 presents results. Section 6 gives conclusions and
future work.

2 Background

2.1 Stress

Stress is a form of prominence in spoken language. Usu-
ally, stress is seen as a property of a syllable or of the
vowel nucleus of that syllable. In English, we can con-
sider two types of stress. Lexical stress refers to the rel-
ative prominences of syllables in individual words. Nor-
mally, words of more than one syllable will have one sylla-
ble that carries primary lexical stress; other syllables may
carry secondary lexical stress, and the remaining syllables
will be unstressed. Rhythmic stress can be used to refer
to the relative prominences of syllables in longer stretches
of speech than the isolated word. When words are used in
utterances, their prominences may be altered to reflect the
rhythmic (as well as semantic) structure of the utterance.
Although much of the work in the literature on detect-
ing stress has focused on lexical stress, the practical appli-
cation that is the ultimate goal of our work requires that



we focus on rhythmic stress. Therefore the experiments
and results below deal with recognising stress in whole
sentences.

2.2 Prosodic features

There are a number of prosodic (sometimes referred to as
’suprasegmental’) features that relate to stress. Thus the
perception of a syllable as stressed or unstressed may de-
pend on its relative duration, its amplitude and its pitch.
The first of these is straightforwardly how long the sylla-
ble lasts; the second relates to the perceived loudness of
the syllable, and is a measure of its energy; pitch is the
perceptual correlate of the fundamental frequency of the
sound signal (i.e. the rate of vibration of the vocal folds
during voiced segments).

All of these prosodic features may vary for reasons
other than signalling stress. For instance, there will be
intrinsic differences in the duration and amplitude of dif-
ferent speech sounds, and different speakers will, because
of their different physiologies, produce different ranges of
amplitude and pitch. In addition, prosodic features indi-
cate other important aspects of the meaning of utterances
— for instance pitch variation is part of the intonation
or melody of speech, which can signal differences in the
meanings intended by the speaker or their emotional state.

2.3 Vowsel Quality

A further correlate of stress is the quality of the vowel in
a syllable. Vowel quality is determined by the configura-
tion of the tongue, jaw, and lips (Ladefoged 1967, Bern-
thal & Bankson 1988, Ladefoged & Maddieson 1990,
Pennington 1996). Since there is some flexibility in the
formation of a vowel, there will in fact be a range of artic-
ulator parameter values that correspond to the same vowel.
Of particular relevance to the detection of stress is the
range from the “full” form of a vowel to the “reduced”
form of the same vowel. Reduced vowel forms tend to
have a more central articulation (i.e. the tongue is nearer
its “rest” position) (Cruttenden 1997, Ladefoged 1993).
In English, the central vowel Aa/ or “schwa” is always re-
duced. In NZ English, the short “I” or /1/ tends to also
have a schwa-like quality, and vocalised forms of /I/ can
also be considered reduced. When unstressed, other vow-
els may also be pronounced in reduced forms, making
them more schwa-like.

In general, the vowels of unstressed syllables tend to
be reduced, and the vowels of stressed syllables tend to
be full. However, the correlation is not perfect, since al-
though reduced vowels only occur in unstressed syllables,
all English vowels — including full vowels — can occur
in unstressed syllables, so that vowel quality is not a com-
pletely reliable indicator of stress (Ladefoged 1993).

2.4 Related Work

There have been a number of reports on stress detection.
Most reports focused on lexical stress detection based on
isolated words, but a few have addressed rhythmic stress
detection in complete utterances.

Lieberman (1960) used duration, energy and pitch to
identify lexical stress in bisyllabic noun-verb stress pairs
(e.g. PREsent vs preSENT). These features were extracted
from the hand-labelled syllables. The database consisted
of isolated words pronounced individually by 16 native
speakers and was used for both training and testing. A
Decision Tree approach was used to build the stress detec-
tor and 99.2% accuracy was achieved.

Aull and Zue (1985) used duration, pitch, energy, and
changes in spectral envelope (a measure of vowel quality)
to identify lexical stress in polysyllabic words. The fea-
tures were extracted from the sonorant portion of automat-
ically labelled syllables. The pitch parameter used was the

maximum value in the syllable. Energy was normalised
using the logarithm of the average energy value. The
database consisted of isolated words extracted from con-
tinuous speech pronounced by 11 speakers. A template-
based algorithm was used to build the stress detector and
87% accuracy was achieved.

Ferij et al. (1990) used pitch, energy and spectral en-
velope to identify lexical stress in bi-syllabic words pairs.
The first and second derivatives of pitch and the first
derivative of energy were also used. The spectral enve-
lope was represented by 4 LPC features. These 9 features
were extracted from the hand-labelled syllables at 10ms
intervals. The database consisted of isolated words ex-
tracted from continuous speech pronounced by three male
speakers. Hidden Markov Models (HMMs) were used to
build the stress classifier and a overall accuracy of 94%
was achieved. Vowel quality, especially the distinction be-
tween reduced and full unstressed syllables was suggested
as a direction for future work.

Ying et al. (1996) used energy and duration to iden-
tify stress in bi-syllabic words pairs. The energy and
duration features were extracted from automatically la-
belled syllables and were normalised using several meth-
ods. The database consisted of isolated words extracted
from continuous speech pronounced by five speakers. A
Bayesian classifier assuming multivariate Gaussian dis-
tributions was adopted and the highest performance was
97.7% accuracy.

A few studies have investigated stress detection in
longer utterances. Waibel (1986) used amplitude, dura-
tion, pitch, and spectral change to identify rhythmically
stressed syllables. The features were extracted from auto-
matically labelled syllables. Peak-to-peak amplitude was
normalised over the sonorant portion of the syllable. Du-
ration was calculated as the interval between the onsets of
the nuclei of adjacent syllables. The pitch parameter used
was the maximum value of each syllable nucleus. Spectral
change was normalised over the sonorant portion of the
syllable. The database consisted of 50 sentences read by
10 speakers. A Bayesian classifier assuming multivariate
Gaussian distributions was adopted and 85.6% accuracy
was reached.

Jenkin and Scordilis (1996) used duration, energy, am-
plitude, and pitch to classify vowels into three levels of
stress — primary, secondary, and unstressed. The features
were extracted from hand-labelled vowel segments. Peak-
to-peak amplitude, energy and pitch were normalised over
the vowel segments of the syllable. In addition syllable
duration, vowel duration and the maximum pitch in the
vowel were used without normalisation. The database
consisted of 288 utterances (8 sentences spoken by 12 fe-
male and 24 male speakers) from dialect | of the TIMIT
speech database. Neural networks, Markov chains, and
rule-based approaches were adopted. The best overall per-
formances ranged from 81% to 84% by using Neural net-
works. Rule-based systems performed more poorly, with
scores from 67% to 75%.

van Kuijk and Boves (1999) used duration, energy,
and spectral tilt to identify rhythmically stressed vowels in
Dutch — a language with similar stress patterns to those
of English. The features were extracted from manually
checked automatically labelled vowel segments. Dura-
tion was normalised using the average phoneme duration
in the utterance, to reduce speaking rate effects. Also
a complex duration normalisation method introduced in
(Wightman 1992) was adopted. Energy was normalised
using several procedures, such as the comparison of the
energy of a vowel to its left neighbour and its right neigh-
bour, to the average energy of all vowels to its left and
to the average energy of all vowels in the utterance. Spec-
tral tilt was calculated using spectral energy in various fre-
quency sub-bands. The database consisted of 5000 train-
ing utterances and 5000 test utterances from the Dutch
POLYPHONE corpus. A simple Bayesian classifier was
adopted, on the argument that the features can be jointly



modelled by a N-dimensional normal distribution. The
best overall performance achieved was 68%.

The summary above shows that stress classification is
most accurate for a limited task, such as identifying the
stressed syllable in isolated bi- or polysyllabic words, with
performance levels noticeably lower in the few studies us-
ing longer utterances. The studies cited do not seem to in-
dicate that a particular classification procedure is any more
successful than any other.

3 FeatureExtraction and Nor malisation

To detect the stressed syllables in an utterance, our system
first performs forced alignment speech recognition using
an (HMM) recogniser (Xie et al. 2004). In forced align-
ment, the target sentence is known, so the recogniser only
needs to perform a mapping between segments in the ut-

terance and phonemes in the target sentence.l Using the
phonemic transcription of the utterance, the system iden-
tifies those segments that correspond to each vowel in the
target. Although stress is generally argued to be a prop-
erty of the syllables in an utterance rather than of just the
vowels, the prosodic and vowel quality features we use in
our study are largely carried by the vowel as the nucleus
of the syllable.

The next task for our system is to determine which of
the vowels are stressed. Each vowel is analysed in several
different ways to extract a set of features that can be passed
to the stress classifier. Since duration, amplitude, pitch
and vowel quality are the parameters that have been shown
to cue the perception of stress differences in English, the
features we need to extract are related to these parameters.

For each of the prosodic parameters (duration, ampli-
tude, pitch), there are many alternative measurements that
can be extracted, and also many ways of normalising the
features in order to reduce variation due to differences be-
tween speakers, recording situations or utterance contexts,
etc. The subsections below describe these alternatives.
Vowel quality features are more difficult to extract. We
describe a method that uses the HMM phoneme models
to re-recognise the segments of the utterance and extract
measures of vowel quality.

3.1 Duration Features

Vowel durations can be directly measured from the out-
put of the forced alignment recogniser since the recogniser
identifies the start and end points of the vowels. The mea-
surements are not completely reliable since it is hard for
the recogniser to precisely determine the transition point
between two phonemes that flow smoothly into each other.
Furthermore, some short vowels may be inaccurately re-
ported if they are shorter than the minimum number of
frames specified for a phoneme in the system.

The absolute value of the duration of a vowel segment
is influenced by many factors other than stress, such as
the intrinsic durational properties of the vowel, the speech
rate of the speaker, and local fluctuations in speech rate
within the utterance. Therefore the absolute duration of
the vowel segment is not a useful feature. What is required
is a normalised duration that measures how much longer
or shorter this vowel segment is than that vowel would
“normally” be spoken by an “average” speaker. To re-
duce the impact of these contextual properties, we applied
three different levels of normalisation to the raw duration
values.

The first level normalisation reduces the effect of
speech rate variation between speakers. To normalise, we
need to compare the length of an utterance to the “ex-
pected” length of that utterance. To compute the latter,

1There are generally multiple possible pronunciations of the target sentence,
so that the recogniser still has to identify which possible pronunciation is present
in the utterance, but this is still very much more constrained than recognising an
utterance when the target sentence is not known.

we first use the training speech data set to calculate the
average duration of each of the 20 vowel phonemes of NZ
English. We then compute the expected utterance length
by summing the average durations of the phonemes in the
utterance, and the actual utterance length by summing the
actual durations of the vowel segments in the utterance.
We can then normalise the durations of each vowel seg-
ment by multiplying by the expected utterance length di-
vided by the actual utterance length.

The second level normalisation removes effects of
variation in the durations of the different vowel phonemes.
Each phoneme has an intrinsic duration — long vowels
and diphthongs normally have longer durations than short
vowels. There are several possible ways to normalise for
intrinsic vowel duration. One method is to normalise the
vowel segment duration by the average duration for that
vowel phoneme, as measured in the training data set. An-
other method is to cluster the 20 vowel phonemes into
three categories (short vowel, long vowel and diphthong)
and normalise vowel segment durations by the average du-
ration of all vowels in the relevant category. We consider
both methods.

The third level normalisation removes the effect of the
variation in speech rate at different parts of a single utter-
ance. To remove this influence, the result of the second
level normalisation is normalised by a weighted average
duration of the immediately surrounding vowel segments.

Based on the three levels of normalisation, we com-
puted five duration features for each vowel segment:

e Utterance normalised duration: the absolute dura-
tion normalised by the length of the utterance;

e Phoneme normalised duration: the duration nor-
malised by the length of the utterance and the average
duration of the phoneme;

e Category normalised duration: the duration nor-
malised by the length of the utterance and the average
duration of the vowel category;

¢ Phoneme neighbourhood normalised duration: the
phoneme normalised duration further normalised by
the durations of neighbouring vowels;

e Category neighbourhood normalised duration: the
vowel category normalised duration further nor-
malised by the durations of neighbouring vowels.

3.2 Amplitude Features

The amplitude of a vowel segment can be measured from
the speech signal, but since amplitude changes during the
vowel, there are a number of possible measurements that
could be made — maximum amplitude, initial amplitude,
change in amplitude, etc. A measure commonly under-
stood to be a close correlate to the perception of ampli-
tude differences between vowels is the root mean square
(RMS) of the amplitude values across the entire vowel.
This is the measure chosen as the basis of our amplitude
features. As with the duration features, amplitude is in-
fluenced by a variety of factors other than stress, includ-
ing speaker differences and differences in recording condi-
tions as well as changes in amplitude across the utterance.
We therefore need to normalise measured amplitude to re-
duce variability introduced by these effects. We apply two
levels of normalisation to obtain two amplitude features.

Our first level normalisation of amplitude takes into
account global influences such as speaker differences and
recording situation, and normalises the RMS amplitude of
each vowel segment against the overall RMS amplitude of
the entire utterance.

Our second level normalisation considers local effects
at different parts of the utterance and normalises the vowel
amplitude against a weighted average amplitude of the im-
mediately surrounding vowel segments.



3.3 Pitch Features

The primary acoustic correlate of the pitch of a vowel seg-
ment is the fundamental frequency, Fo, of the speech sig-
nal. Like amplitude, pitch can vary over the course of the
vowel segment and is influenced by a variety of different
factors, including the basic pitch of the speaker’s voice.
To reduce the effects of speaker differences, we normalise
the pitch measurement of a vowel segment by the average
pitch of the entire utterance.

The change in pitch over the vowel segment is at least
as important as the pitch level of the vowel, but it is not
clear exactly which properties of pitch are most significant
for determining stress. Therefore, we extracted 10 dif-
ferent pitch features, including not only the average nor-
malised mean pitch value of a vowel segment, but other
features intended to capture changes in pitch. The 10 pitch
features of a vowel segment are calculated as follows:

e Normalised mean pitch: the mean pitch value of the
vowel normalised by the mean pitch of the entire ut-
terance.

e Normalised pitch value at the start point: the pitch
value at the start point of the vowel divided by the
mean pitch of the utterance.

e Normalised pitch value at the end point: the pitch
value at the end point of the vowel divided by the
mean pitch of the utterance.

e Normalised maximum pitch value: the maximum
pitch value of the vowel divided by the mean pitch
of the utterance.

e Normalised minimum pitch value: the minimum
pitch value of the vowel divided by the mean pitch
of the utterance.

o Relative pitch difference: the difference between the
normalised maximum and minimum pitch values. A
negative value indicates a falling pitch and a positive
value indicates a rising pitch.

¢ Absolute difference: the magnitude of the Relative
difference, which is always positive.

e Pitch trend: The sign of the Relative difference — 1
if the pitch “rises” over the vowel segment, -1 if it
“falls”, and O if it is “flat”.

e Boundary Problem: a boolean attribute, true iff the
pitch value at either the start point or the end point of
the vowel segment cannot be detected.

e Length Problem: a boolean attribute. This attribute
is true iff the vowel segment is too short to compute
meaningful minimum, maximum, or difference val-
ues.

3.4 Vowel Quality Features

Unstressed syllables are associated with centralised vow-
els, particularly the /o/ vowel which is the primary re-
duced vowel. In NZ English, /1/ is also pronounced very
centrally and often acts as a reduced vowel. Full vow-
els tend to be more peripheral, and are associated with
stressed syllables. However, a vowel with the quality of
a full vowel that is pronounced more centrally than usual
may act as a reduced vowel, even if it is not central enough
to be transcribed as Ag

To determine whether a vowel segment represents a
reduced vowel, we need to recognise the intended vowel
phoneme, and also to determine whether it is pronounced
more centrally than the norm for that vowel. Since our
speech recogniser uses forced alignment, it only identifies
the segments of the utterance that match each expected
vowel best and does not identify how the speaker pro-
nounced the vowel. For the prosodic features above, this
is all that is needed, and using a full recogniser on the
entire sentence would reduce the accuracy of the recogni-
tion. However, for measuring vowel quality, we need to

know what vowel the speaker actually said, and how they
pronounced it.

To determine the actual vowel quality of the vowels,
we apply a very constrained form of full recognition to
each of the vowel segments previously identified by forced
alignment, and use the probability scores of the individual
HMM phoneme models to compute several features that
indicate whether the vowel is reduced or not. The algo-
rithm is illustrated in figure 1 and outlined below.

Encodi ng

(

IQIREEE

F A

Acoustic Acoustic
Li keli hood 1 Li kel i hood 3

Figure 1: Vowel Quality Features Processing

Step 1 Extract vowel segments from utterance using
forced alignment. Label each segment with the ex-
pected vowel phoneme label, based on the target sen-
tence and the pronunciation dictionary.

Step 2 Encode each vowel into a sequence of acoustic
parameter vectors, using a 15ms Hamming window
with a step size (frame period) of 11ms. These pa-
rameters consist of 12 MFCC features and the 0’th
cepstral coefficient with their first and second order
derivatives. The values of these parameters were sug-
gested by our previous study (Xie et al. 2004).

Step 3 Feed the parameter vector sequence into the 20
pre-trained HMM vowel recognisers to obtain 20 nor-
malised acoustic likelihood scores. Each score is
the geometric mean of the acoustic likelihoods of all
frames in the segment, as computed by the HMM
recogniser. The scores are likelihoods that reflect
how well the segment matches the vowel type of the
HMM.

Step 4 Find the score of the expected vowel type S, the
maximum score of any full vowel phoneme S; and
the maximum score of any reduced vowel phoneme
S from the above 20 scores.

Step 5 We then compare the scores of the best matching
full vowel and the best matching reduced vowel to the
score of the expected vowel. We compute four fea-
tures, two of which measure the difference between
the likelihoods, and two measure the ratio of the like-
lihoods. In each case, we take logarithms to reduce
the spread of values:
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Both difference and ratio measures have advantages
and disadvantages. We explore which of the two ap-
proaches is better for the detection of rhythmic stress.

Step 6 We also compute a boolean vowel quality feature,
T, to deal with cases where the vowel segment is so
short that F or R can not be calculated. The attribute
is true iff the vowel segment is less than 33ms (the
minimum segment duration allowed by our HMM).
If this attribute is true, we set F and Rto 0.

4 Experiment Design and Methods

4.1 Experimental Goals

The goals of our experiments are to investigate whether it
is feasible to build an effective automated stress detector
for English utterances and to evaluate the different sets
of features that we have extracted. Our approach is to
use two examples of two standard machine learning tools
— a decision tree constructor (C4.5) and a support vector
machine (LIBSVM)(Chang & Lin 2003) — to construct
stress detectors using these features, and to measure the
performance of the resulting stress detectors. One reason
for considering a decision tree constructor is that they can
generate explicit rules that might help us identify which
features were most significant for the stress detector.

4.2 DataSet

The experiments used a speech data set collected by the
School of Linguistics and Applied Language Studies at
Victoria University. This data set contains 60 utterances
of ten distinct English sentences produced by six adult fe-
male NZ speakers, as part of the New Zealand Spoken
English Database (www.vuw.ac.nz/lals/nzsed). The utter-
ances were hand labelled at the phoneme level, and each
vowel was labelled as stressed or unstressed. There are
703 vowels in the utterances; 340 are stressed and 363 un-
stressed. The prosodic and vowel quality features were
extracted for each of these vowels.

4.3 Performance Evaluation

The task of our stress-detector is to classify vowels as
stressed or unstressed. Neither stress category is weighted
over the other, and so we use classification accuracy to
measure the performance of each classifier.

Since the data set is relatively small, we applied the
10-fold cross validation method for training and testing
the stress detectors. In addition, we repeated this training
and testing process ten times. Our results below report the
average results over the ten repetitions.

4.4 Experiment Design

As discussed earlier, we computed several sets of features
and selected two learning algorithms for the construction
of stress detectors. To build the stress detector, the train-
ing and test data needed to be as accurate as possible. We
therefore used hand labelling to determine the vowel seg-
ments and phoneme labels in the input speech data. We
designed three experiments to investigate a sequence of
research questions.

To explore which subset of prosodic features is most
useful for learning stress detectors for our data, the first
experiment uses the two learning algorithms in conjunc-
tion with all seven different combinations of the prosodic
features (D, A, P, D+A, D+P, A+P, and D+A+P, where
D, A, and P are the sets of duration, amplitude, and pitch
features, respectively).

To assess the contribution of vowel quality features to
stress detection, the second experiment uses the two learn-
ing algorithms in conjunction with six different combina-

tions of the vowel quality features (Fq + T, Ry+ T, Ry +
Fo+T, R+T,R+T,and R +F +T).

The third experiment investigates whether combining
the prosodic features and the vowel quality features im-
proves performance.

In these experiments, we also investigate whether scal-
ing the feature values to the range [-1 ... 1] improves per-
formance.

For the SVM, we used a RBF kernel and a C parameter
of 1.0.

5 Results

5.1 Experiment 1: Prosodic Features

Features C4.5 LIBSVM
Unscaled | Scaed | Unscaed | Scaled
D 80.66 80.22 81.00 82.55
A 68.18 68.26 70.18 69.08
P 55.12 56.00 57.82 58.45
D+A 81.34 81.06 83.88 84.72
D+P 80.84 80.10 79.27 81.55
A+P 66.96 66.36 70.00 70.28
D+A+P 80.40 80.58 79.72 83.23

Table 1: Results for prosodic features.

The results for the prosodic features in the first exper-
iment are shown in table 1. Overall, the best results ob-
tained by the LIBSVM are almost always better than those
obtained by C4.5 for all feature combinations. Scaled data
led to better performance than unscaled data for LIBSVM
in most cases, but this is not true for C4.5. For both LIB-
SVM and C4.5 , the combination of duration and ampli-
tude features (D + A), produced the best results: 84.72%
and 81.34%, respectively. Adding the pitch features to this
subset did not improve performance in any case. These
results suggest that the subset of features (D+A) is the
best combination for our data set. While both decision
trees and support vector machines are supposed to be able
to deal with the redundant features, neither of them per-
formed well at ignoring the less useful features in this ex-
periment.

5.2 Experiment 2: Vowel Quality Features

Features C4.5 LIBSVM
Unscaled | Scaled | Unscaled | Scaled
Fq+T 65.50 66.17 66.57 68.27
Ry+T 80.74 80.87 81.36 81.51
Fo+Ra+T 79.88 79.73 79.12 81.51
F+T 67.80 68.38 62.56 63.44
R +T 82.14 82.15 82.50 78.37
F+R+T 80.64 80.48 81.29 78.37

Table 2: Results for Vowel Quality Features.

The second experiment investigated the performance
of the vowel quality features. The results are shown in
table 2. The vowel quality features alone achieved re-
sults that were very comparable to the performance of the
prosodic features. The best result was 82.50%, which was
achieved by LIBSVM using the features (R, +T). This
result was only 2.22% lower than the best result achieved
by the seven prosodic features. In addition, the following
points can be noted.

e The reduced vowel quality features Ry and R; are
more reliable than full vowel quality features Fy and
Fr.

e In most cases, using the likelihood ratios is better
than using the likelihood differences.

e For LIBSVM, if using likelihood differences for
vowel quality features, scaling is recommended; if
likelihood ratios are used, scaling is not needed.



e For C4.5, in most cases, scaling produced slightly
better results than non-scaling, regardless of whether
differences or ratios were used, but the difference in
performance between scaling and non-scaling was al-
ways very small.

5.3 Experiment 3: All Features

Features C4.5 LIBSVM
Unscaed | Scaled | Unscaled | Scaled

C+Vy 80.26 81.38 81.04 82.23

C+Vp 80.30 80.42 81.14 82.40

Table 3: Results for Prosodic and Vowel Quality features.

The third experiment was performed using the combi-
nation of all the prosodic features (C) and the vowel qual-
ity features using either the difference (Vg = Fy+Rg+T)
or the ratio measure of vowel quality (Vi =F +R- +T) As
can be seen from table 3, combining all features from the
two sets did not improve the best performance on our data
set over using either prosodic or vowel quality features
alone. However, the result did demonstrate that the SVM
achieved better performance than the C4.5 on the data set,
suggesting that SVM is more suitable for a relatively large
data set with all numeric data.

For all the three experiments, C4.5 produced rules that
were far more complex and much harder to interpret than
expected. Given that most of the features are numeric, this
should not have surprised us.

6 Conclusions

The goal of this paper was to develop an approach to
rhythmic stress detection in NZ English. Vowel segments
were identified from speech data and a range of prosodic
and vowel quality features were extracted from the vowel
segments. The vowel quality features were calculated
using individual HMM vowel models. Different combi-
nations of these features were normalised and/or scaled
and then fed into the C4.5 and LIBSVM algorithms to
learn the stress detectors. The approach was tested on
60 adult female utterances containing 703 vowels. The
results show that a combination of duration and ampli-
tude features achieved the best performance (84.72%) and
that the vowel quality features also achieved good results
(82.50%). On this data set, the support vector machine
achieved better results than decision trees. It is interesting
to note that the prosodic features and the vowel quality
features are each equally effective at detecting stress, but
that their combination did not appear to enhance perfor-
mance.

We were surprised that the pitch features did not turn
out to be particularly useful. We suspect that the algorithm
used to identify the pitch may be error-prone, and that the
pitch normalisation was inadequate. We will examine al-
ternative pitch detection algorithms and better normalisa-
tion methods.

While the maximum accuracy is not good enough yet
to be very useful for a commercial system, these results
are quite comparable to (even slightly better than) similar
systems in this area (Jenkin & Scordilis 1996, van Kuijk &
Boves 1999), reflecting the fact that rhythmic stress detec-
tion from continuous speech remains a difficult problem
in the current state of the art of speech recognition. We
will need to explore a variety of techniques to improve the
performance. We will need to explore a greater variety
of machine learning tools — there are other decision tree
constructors and other varieties of SVM, as well as other
techniques such as neural nets and genetic programming
(some preliminary experiments with genetic programming
are very promising). We will also need to examine dif-
ferent combinations of the features and vowel quality and
explore better normalisation methods.
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